
f
/ • ' / _J 0"/,/," :-'i', l- Z

v

///-_/ :!-__

f, 6

A RESEARCH REVIEW_ OF QUALITY
ASSESSMENT FOR SOFTWARE

3 / _Jl

,"'i 7 i-L _+'-' ? --

SofTech, Incorporated

April 30, 1991

Cooperative Agreement NCC 9-16
Research Activity No. SE. 18

Deliverable 2.10A

NASA Johnson Space Center

Information Systems Directorate

Information Technology Division

© ©

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

T.E.C.H.N.I.C.A .L R.E.P.O.R.T

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Ciear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of

faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear

Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.

mm_

A RESEARCH REVIEW OF QUALITY
ASSESSMENT FOR SOFTWARE

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by SofTech, Incorporated. Dr. Charles

McKay served as RICIS research representative.

Funding has been provided by Information Technology Division,

Information Systems Directorate, NASA/JSC through Cooperative Agreement

NCC 9-16 between NASA Johnson Space Center and the University of Houston-

Clear Lake. The NASA technical monitor for this activity was Ernest M. Fridge,

of the Software Technology Branch, Information Technology Division, Information

Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author

and should not be interpreted as representative of the official policies, either

express or implied, of NASA or the United States Government.

.A
Quality

Research Review of

Assessment for Software

ADANET-FD-R&T-086-0

April 30, 1991

®

Subcontract No. 044

Cooperative Agreement NCC9-16
Project No. RICIS No. SE. 18

SubmitteA to:

MountainNet, Inc.
P.O. Box 370

DeLIslow, WV 26531-0370

Prepared by:
SofTech, Inc.

1300 Hercules Drive
Suite 105

Houston, TX 77058

TABLE OF CONTENTS

Executive
1.0
2.0

Summary ... 1
Introduction ... 2

Software Quality .. 2
2.1 Characteristics of Software Quality? ... 2
2.2 What Quality Characteristics Must AdaNet Judge? .. 3

2.2.1 Correcmess .. 5

2.2.2 Reliability ... 5
2.2.3 Verifiability ... 5

2.2.4 Understandability ... 6
2.2.5 Modifiability .. 6
2.2.6 Cerfifiability .. 6

3.0 Factors Impacting Quality .. 7
3.1 Product Specific Criteria .. 7

3.1.1 Quantitative Factors ... 7
3.1.1.1 Complexity and Volume .. _........................ 7
3.1.1.2 Size .. 8

3.1.2 Engineering Principles ... 8
3.1.2.1 Abstraction & Information Hiding .. 9
3.1.2.2 Modularity, Localization, & Confh'mability ... 9
3.1.2.3 Uniformity & Completeness ... 9

3.2 Development Process Criteria ... 9
3.2.1 Management ... 10

3.2.1.1 Development Models ... 10
3.2.1.2 Process Models ... 11

3.2.1.3 Resources .. 12
3.2.2 Engineering .. 12

3.2.2.1 Requirements, Specification, and Design .. 12
3.2.2.2 Coding .. 13

3.2.2.2.1 Language and other tools ... 13
3.2.2.2.2 Reuse of Software Parts ... 13

3.2.2.3 V&V .. 13
3.2.2.3.1 Formal and Informal Reviews 14
3.2.2.3.2 Formal Verification .. 14

3.2.2.3.3 Testing ... 15
4.0 Methods for Quality Assessment ... 15

4.1 Product Assessment .. 16
4.1.1 Static Assessment ... 16

4.1.1.1 Complexity & Volume .. 17
4.1.1.2 Abs_'action & Information Hiding .. 17
4.1.1.3 Modularity,LocaliTation, & Confumability .. 17
4.1.1.4 Uniformity & Completeness ... 18

4.1.2 Dynamic Assessment ... 18
4.1.3 Operational Assessment .. 19

4.2 Process Assessment .. 19

4.2.1 Management Process Assessment ... 20
4.2.2 Engineering Pmct.sses Assessment ... 21

5.0 So_ .. 23

5.1 Published Standards on Quality Issues .. 23
5.2 Related Standards .. 23
5.3 Other References .. 24

ii

Executive Summary

This paper is the first of two papers which will recommend measures to assess the quality
of software submitted to the AdaNet program. In this paper the quality factors that are
important to software reuse are explored and methods of evaluating those factors are
discussed. A follow-on trade study will recommend specific measures.

Quality factors important to software reuse are: correctness, reliability, verifiability,
understandability, modifiability, and certifiability. Certifiability is included because the
documentation of many factors about a software component such as its efficiency,
portability, and development history, constitute a class of factors important to some users,
not important at all to others, and impossible for AdaNet to distinguish between a priori.

The quality factors may be assessed in different ways. There are a few quantitative
measures which have been shown to indicate software quality. However, it is believed that
there exist many factors that indicate quality and have not been empirically validated due to
their subjective nature. We characterized these subjective factors by the way in which they

support the software engineering principles of abstraction, information hiding, modularity,
localization, confirmability, uniformity, and completeness.

The development process has a major effect on the quality of software. The verification
activities if they include correctness proofs or rigorous inspections, have been shown to
reduce errors in software by more than an order of magnitude.

Methods for evaluating those factors affecting quality include both automatable procedures
and those that must be manually applied. Only a few methods exist that are totally objective
in the sense that they may be measured and once measured, compared to an empirically
derived scale which gives their merit. Many methods may measure certain characteristics,
but once having rendered a numerical value, offer no scale that qualifies that number.
Some methods are strictly subjective.

s

1.0 Introduction

AdaNet is a reuse repository for software and its associated lifecycle products. Quality
assessment for AdaNet purposes is to determine if the software and its associated lifecycle

products are of sufficient quality such that a reuser would want to reuse them and, in fact,
determine if the software and its associated products should be placed in the repository.
This implies two points of qualification: first, upon the submittal of the product to the
library; and second, by the reuser to determine if the product is of sufficient quality for it to
be reused. Therefore, quality assessment must be addressed from the standpoint of:

• Assessing the quality of software and its associated products submitted to the
library.

• Providing a reuser adequate assurance or measure of the quality of the software and
its associated products.

This report, however, attempts only enlightenment as to what software quality is, the
factors that influence software quality and the means of measuring those factors. A follow-
on trade study will address the questions of which factors AdaNet should attempt to assess.

2.0 Software Oualitv

Software quality is the degree that software meets the quality specifications placed upon it.
The same statement may be made for any product. The quality of any product may be
perceived differently by different users, depending on the purpose they want the product
for. Several factors of software quality are examined. Some of these factors are
extensional, that is they arc characteristics of the software itself; some are intensional
factors that somehow characterize the process of producing software.

2.1 Characteristics of Software Quality

Having said that software quality depends on quality specifications, the next step would be
to characterize how software may be specified. Unfortunately, there is a wide variation in
opinion as to what these characterizations are. Table 2.1-1 shows some of the varied
opinions on this.

IDEUTSCH]:
Correctness

Efficiency

Expendability
Flexibility

Integrity

Interoperability

Maintainability
Portability

Usability
Reliability
Reusability
Safety

Survivability
Verifiability

Table 2.1

[2168]. [McCall]
Correctness

Efficiency
Flexibility
Integrity

Interoperability

Maintainability
Portability
Reliability
Reusability
Testability
Usability

[BOEHM76]
Accessibility
Accountability
Accuracy
Augmentability
Communicativeness

Completeness
Conciseness

Consistency

Device-Independent
Efficiency
Human Engineering
Legibility
Maintainability
Modifiability
Portability

Reliability
Robustness

Self-Containodness

Self-Descriptiveness
Structuredness

Testability
Understandability

I Usability

-1 Various Quality Characteristics

That several of these quality characteristics can affect potential reuse of components has
been recognized in previous and current efforts to reuse software. To distill which quality
characteristics are important for reuse, the opinions of two industry giants who have long
studied software and quality will be examined.

2.2 What Quality Characteristics Must AdaNet Judge?

In [CALDIERA] Victor Basili recognized the quality characteristics of correctness,
readability (understandability), testability (verifiability), ease of modification and
performance as important for component reuse.

Barry Boehm stated that the acquirer of a software package is mainly concerned with three
questions [BOEHM76]:

• "How well (easily, reliably, efficiently) can I use it as-is?"
• "How easy is it to maintain (understand, modify, and retest)?"
• "Can I still use it if I change my environment?"

He then proceeded to stratify the qualify characteristics listed in Table 2.1-1 to address the
above questions. His conclusions are shown in Figure 2.2-1.

SC)I=rECH 3

General

A.s-ls

Utility

Portability

Reliability

Efficiency

I HumanEngineering

Accuracy

Completeness

Robustness/

Integrity

Consistency

Efficiency I

Accessibility I

Testability

JMaintainability

Understandability

Communicativene_

Self- IDescriptiveness

Structureness I

Conciseness J

t Legibility J
Modifiability _lA_m_nt_oi,ty J

Figure 2.2-1 Software Quality Characteristics Tree [BOEHM76]

It can be seen that (allowing for the jargon) four of Basili's five reuse qualities (readability,
testability, ease of modification, and performance) map direcdy to the the second tier of
Boehm's quality characteristics tree. Combining the two lists (and unifying the common
terms) gives:

sOFrec::H 4

Corrcctness

Reliability
Verifiability
Understandability

Modifiability
Human engineering
Efficiency
Portability

Combining the last three items on the list (for reasons to be discussed below) gives the
quality characteristics that shall be considered (for this paper) important for software reuse.

Correctness

ReHab_ty
Verifiability
Understandability
Modifiability
Certifiability (Human Engineering, Efficiency, and Portability)

Each of these terms is discussed below.

2.2.1 Correctness

A program may be considered correct if it will transform a specified input set of data into a
specified output set of data. As measured, correctness is the degree to which software
design and code will implement the software specification. Correctness implies a lack of
errors in software. Correctness also implies that the software is complete in its
specification and implementation of that specification.

Note that this definition does not imply that the specification itself is what the customer
wanted. For reuse purposes, only the customer knows what they want and will make their
own decisions about that. What must be given to them is assurance that the software
correctly implements the provided specification.

2.2.2 Reliability

Reliability is the demonstrated ability of software to perform dependably. As measured
reliability denotes failure or lack of failure of the software. Measurement of reliability may
involve analysis of a distribution of errors detected during product development or the
execution of the product.

To have good reliability software should exhibit a low failure rate. A low failure rate
would seem to imply a low error rate. A low error rate is also a prerequisite for
correctness. Similarly, both terms imply that the software performs according to its
specification. However, reliability also connotes the idea of robustness,i.e., the tendency
(or lack of) of the software to fail even when it is operating outside of the context that its
specification is intended to address. This operational facet is what shall be emphasized
when the term reliability is used.

s°_-reCH s

2,2.3 Verifiability

Verifiability is the case with which software may be tested and otherwise verified.
Verifiability is concerned with several facets of the software and the associated products.
Some of these aspects are extensional to the code such as how the software is structured.
Others are intensional. How easily the software may be mapped to its requirements is an
intensional factor since, without good requirements, the mapping cannot be evaluated (or
will be poorly evaluated). Likewise, some of the aspects of verifiability are measureable,
others are only subjectively assessable.

2.2.4 Understandability

Software and itsassociatedproducts arc understandableiftheirindividualand combined

purpose, function,and operationiscleartoa reader.Understandabilityimpliesreadability,

consistency,and self-descriptivenessinthe softwareand qualityof documentation. Use of

documentation and coding standards and simplicityin the design and code are major

contributorstounderstandability.

2.2.5 Modifiability

Change can be considered normal for a component and thereby, so can the modification of
the component. Quality assessment for reuse purposes must consider that most
components will have to be modified in some fashion before being reused.

Any assessment of modifiability is strictly inferential in nature. However, other
mcasureable factors influence modifiability and so may be used for assessment. For
instance, if any change to a component is likely to introduce errors because of component

complexity, that component should be viewed in a ncg.ativc sense. Conversely, if a
component is designed for easy modification it should receive a higher rating for reuse.

2.2.6 Certifiabilitv

Ccrtifiability consists of a number of quality characteristics rolled together primarily
because AdaNct cannot assess them in an objective fashion. This lack of objectivity stems
not so much from a lack of measurable factors and effects, but rather from an inability to
assess the needs of the reuser. Efficiency and portability may be highly important for some
applications but not the least important in others. A routine that is highly unportable may
be ideal for a rcuser who happens to be using the "right" environment. A routine that is not
efficient may, nevertheless, have just the right interface for an engineer building a prototype
where performance is not an issue.

However, this category forms a highly important means for a reuser to determine if a
component is right for him. As indicated in the introduction, AdaNet must not only judge
those quality factors that directly indicate a reuse potential for any component, but also
those factors which may make a component attractive to a potential reuser. Prieto-Diaz and
Freeman noted in [PRIETO_DIAZ] that "For code reuse to be attractive, the overall effort
to reuse the code must be less than the effort to create new code." For AdaNet customers

the cost of reuse must be balanced against the cost of development and testing, of the new
code. The development cost includes the cost of the designers, rewewers and
programmers, and the cost of producing the documentation specific to that component

SOF[eCH 6

(these costs could be estimated and attached to each component in the library for a reuser to
access when evaluating the component for his purposes).

Many projects that might consider the reuse of AdaNet components, have stringent
(government/customer imposed) requirements for the quality of their products. AdaNet
products that have a documented "quality pedigree" may offer powerful economic
incentives for their reuse. That the correct engineering activities have been performed and
documented, applicable standards applied to the software interfaces and project
documentation, and all performance criteria and system dependencies have been verified
and documented, can provide enormous incentive for a potential reuser.

Characteristics such as efficiency or portability should be documented. If system
dependencies are limited or isolated then those modules that are system dependent, what the
dependencies are, and which systems support the dependencies, should be noted for reuser
prevue.

3.0 Factors Impacting Ouality

Multiple factors have been shown to affect software quality. Please note that these factors
are rarely quality characteristics themselves, but instead are attributes of the software have
been shown or are believe to affect the software in a manner that enhances or detracts from

the quality of a particular software component.

Deutsch and Willis in [DEUTSCH] addressed quality as consisting of product and process
quality, product quality being an attribute of: documents, designs, code, tests; and process
quality being an attribute of techniques, tools, people, organization, and facilities.

This section will consider a number of factors that influence software quality and will
classify them into the product and process categories defined above. Presented will be
quantitative data that empirically demonstrates the effects of some aspects of software
products and processes upon quality. Also discussed will be non-quantitative criteria that
is largely felt to affect software quality.

3.1 Product Specific Criteria

Product specific criteria include those assessments that can be made by code examination.
In some cases the code examination can be automated since the specific criteria is objective
and implementable. However, empirical data does not exist for all the information that may
be revealed through code examination. This non-quantitative criterion is brought out in
section 3.1.2 Engineering Principles.

3.1.10uantitative Factors

Below are presented factors which are measurable and whose measure has been shown to
correlate to whatever degree with one or more of the software characteristics.

3.1.1.1 Complexity and Volume

Based on empirical data it appears that complexity and volume factors can affect the quality
characteristics of correctness (and so reliability), modifiability, verifiability, and

SOFI'E(=H 7

understandability. Complexity and volume are commonly defined and measured by the
McCabe and Halstead metrics which will be discussed later. It appears that these two
measures can predict when software will:

Exhibit more errors

Walsh in [WALSH] reported on a military software project to which McCabe's metric

was applied. They found 23% of the routines with a metric value greater than 10
accounted for 53% of all bugs. Walsh further stated that in the same study of 276

procedures, the routines with M greater than 10 and 21% more errors per line of code
than those with metric values below 10. [BEIZER83] claims that Curtis substantiates

these figures.

In [AKIYAMA] it was shown that the number of errors in code were not as closely
correlated with module length as it was with the sum of subroutine calls and decision
points in the control structure (.92 correlation coefficient).

In [FUNAMI] Funami and Halstead used Akiyama's data to show that the number of

elementary discrimination required to generate a program correlated to the number of
bugs with a correlation coefficient of .982. The number of elementary discriminations
was computed using measures of program volume and potential volume [FUNAMI].

Be more difficult to test

Curtis, Sheppard, and Milliman in [CURTIS] claim, based on their experimental
evidence, that "the software complexity metrics developed by Halstead and McCabe are
related to the difficulty progananers experience in locating errors in code." They further

state that "Code which is more psychologically complex may also be more error-prone
and difficult to test."

Inhibit modification

Gibson and Senn reported in [GIBSON] that their studies "indicate that structural
differences do impact performance", performance in this case being the ability to
successfully modify the software. They concluded that complex programs are more
difficult to maintain and require more corrective maintenance. Gibson and Senn also

reported that Halstead's E, McCabe's v(G), Woodward's K, and Gaffney's Jumps

appeared to relate to the time required to implement changes and Chen's Min and
Benyon-Tinker's C2 appeared to relate to the rate of introducing errors during
modification.

3.1.1.2 Size

Quantitative data on the effects of component size on the error rate is varied.

[TAKAHASHI] reported that source code size had no demonstrated influence on the
program error rate.

However, in [WITHROW] error statistics indicated that Ada packages of 200 to 250 lines
had a minimum error rate when compared to other size packages. This inverse relationship
has been noted in other studies with the optimal size ranging up to 500 lines of code. The
range of mean error densities ranged from 1.8 to 8.3 errors per thousand lines of code.

At this time it appears no objective measure of the influence of code size can be made.

_OIg"el_H 8

3.1.2 En_ineerin_ Principles

Examination of code can reveal a great deal more than the factors listed in the section
above. Information about design, coding conventions and style, dependencies, default and
initial values, error handling, can be seen in a code examination. This author was unable to

find empirical evidence that show the effects of design method, coding style, etc., upon
software quality.

However, this is not to say there is no evidence. Authoritarian evidence is rhetorically
valid, particularly when there is a preponderance of opinions on the subject. Ultimately, all
authoritarian arguments are based on experience and beliefs of those authorities.

An example of these authoritarian arguments regards the design method used in building
software. Most authorities now seem to agree on the benefits for using object-oriented or
object-based methods. Their argument may be based on reasoning like that used by Parnas
[PARNAS] or on their own personal experience in using the methods. Regardless of the
reasoning, most experts would now agree that object-oriented is a "good thing."
Quantitatively assessing how much of a good thing it is, is another matter.

A list of the good things that software might exhibit would include minimal interfaces,
client/server architecture, coding standards;however, some of the features that might have
been considered good things in the past may not be as preferable, depending on the
particular instance. Structured design is probably a design technique which, while still
valuable, might be diminished in the eyes of some experts who would choose a later, more
modem technique.

To not restrict ourselves to judgement criterion which may become quickly outmoded, an
intermediate set of criteria to judge software will be used. Booth suggested that application
of the principles of abstraction, information hiding, modularity, localization, uniformity,
completeness, confirmability would be sufficient to engineer "good" software [BOOCH].

We will adopt these engineering principles as indicators for software quality and briefly
discuss the applicability of each term based on Booth's discussion. To the extent that
software exhibits these principles, we will consider that good. To the extent that software
does not show or violates these principles, we shall consider that bad. It should be noted
first that there does exist automated means of measuring the application of these principles
in software. However, there exists no objective scale by which to assess a particular
software component as good or bad based on the measure of one of these principles. In
addition, while it is possible to render a number representing the application of these
principles, this number may not represent the timely and purposeful application of these
principles. Thus, subjective examination to assess the application of these principles may
still be necessary.

3.1.2.1 Abstraction & Information Hiding

Abstraction is to emphasize the essential qualities while de-emphasizing the inessential
details. Information hiding can be considered the hiding of those inessential details. Since
the human mind can only consider a limited number of items simultaneously, these
principles allow the mind to focus on what is important and pertinent and not become
cluttered and confused with too much detail. Abstraction and information hiding axe
believed to aid correctness, modifiability, understandability, and efficiency.

Functions, processes, and data may be abstracted. A procedure is an example of functional
abstraction, while the Ads task is an example of process abstraction. Objects are examples

SoI=reCH 9

of data abstraction. In each case the principles of abstraction and information hiding are
used to permit a conceptualization and naming of a sequence of actions, a parallel action, or
an entity in the problem space.

3.1,2.2 Modularity. Localization. & Confirmability

Modularity, localization, and confirmability deal with the structuring of the software.
Modularity is the purposeful structuring of software towards some goal(s). The
modularization of the program must necessarily reflect the top level abstractions that are
made in the program design. We usually consider good modularity as exhibiting the
properties of loose coupling and strong cohesion. Localization is the principle that
facilitates loose coupling and strong cohesion. Modularity and localization are believed to
aid modifiability, correctness, and understandability.

The principle of confirmability directly supports verifiability. Confn-mability indicates that
the software is structta_ so that it can be easily tested. This structuring has as much to do
with the control structure of the software as with the decompositions that are used.

3,1.2.3 Uniformity & Completeness

Uniformity denotes a consistency in style of description. This consistency extends to both
documentation and software. In documentation uniformity implies the use of standards, in

code it implies a coding style. The standards and style used must be aimed at promoting
understandability, the quality factor that uniformity supports.

Completeness insures that all required elements of documentation and code are present.
For documentation this may mean complete listings, complete traceability, complete
analysis, etc. For code completeness/t implies that all specified elements are present and
performed and that all preconditions such as initializations are include d . Completeness
supports the quality factors of correctness and understandability.

3.2 Development Process Criteria

Why examine the process used to produce software components? After all, we are seeking
to determine the quality of the component not assess a software project. Surprisingly it
turns out that the most significant factor(s) in producing quality software is the process

used in developing the software.

This fact is due to the inevitable and unanimous (or as close to unanimous as can be)

conclusion that no significant piece of software can ever be built without containing errors
and can never be verified or tested so as to guarantee the complete absence of errors.

Therefore, the production of software should minimize the number of errors in the
software. By adherence to some of the methods discussed below, some front runners like
Harlan Mills, have been able to produce software systems that have never failed and so

must be considered nearly error free.

This side effect of rigorous development processes has not been unnoticed. It has been
observed that there exists "an intimate relationship between the reliability of a product and

the process used to develop that product." [IEEE982.2] In [HUMJ87] it is stated "The
quality of a software product stems, in large part, from the quality of the process used to
create it." As part of their efforts to improve software quality, the Software Engineering
Institute (SED at Carnegie Mellon University has developed a categorization for contractors

SOF[eCH _o

[HUM J87] [HUMS87] [HUM89] based upon assessing the contractor's development
process (see section 4.2).

Many of the points raised in this report under process criteria and assessment are also
brought out in the SEI report(s). Although the SEI report and this report agree on the
importance the management and engineering processes for rendering quality, the focus of
the SEI report and this one are different. The SEI report attempts to use qualification of the
development processes as a way to gauge a contractor's ability to produce quality software
for a government contract. This report attempts to use assessment of the development
process to (indirectly) judge the quality of a software component.

3.2.1 Management

Management's role in determining software quality is to establish the framework necessary
to support the engineering processes responsible for actually producing the products. The
support includes process definition and resource management. These activities are
discussed below. Without an adequate framework, the engineering process cannot hope to

develop a successful or quality product.

The effect of management upon software quality is based on authoritarian evidence.
However, the number of failed software projects that did not have well defined production
processes attest to the necessity of good management activities and their effect.
Recognizing that ultimately all aspects of software development, its success or failure,
quality, etc. are economic activities, we see that the management of the software process is
vital to good quality.

3.2.1.1 Development Models

The first development model for software has been termed the code and fix model. This
development model produced poor quality software that was rarely adequate for the user's
needs. Though several different forms of this model (such as the evolutionary model) were
tried, its failures convinced the industry that development models for engineering software

was necessary.

The development model that has shaped major system development (at least those of
governmental agencies) for the past several years has been the waterfall lifecycle model.
The waterfall lifecycle model offers a phased approach that provides intermediate points of
assessment and review by the contracting agencies. This provides the contracting agencies
decidedly better insight into the management and development processes and whether they
are moving toward the desired goal in a productive fashion.

Within the waterfall development model structure several strategies have emerged. Top-
down and bottom-up are two of the most repeated development strategies. Although
bottom-up development may be superior in a few instances, such as developing device
drivers, most sources would favor the top-down approach. Mills points out in [MILLS76]
"The necessity of top-down development in large software systems is born out of bitter
experience with top-down design and bottom-up development."

Improvements to the waterfall model have been suggested. Basili and Turner have
proposed a top-down, stepwise refinement approach called iterative enhancement
[BASILI75]. Iterative enhancement involves starting with a simple implementation initially

SOF[eC:H]]

and then iteratively enhancing analysis, design and implementation as more knowledge is
gained about the system.

Boehm and Papaccio report in [PAPACCIO] that Parento analysis applies to software.
Parento analysis shows that 20 percent of the problems cause 80 percent of rework costs.
They recommend that development and V&V focus on high risk areas. Boehm has
proposed a new development model called the spiral model [BOEHM88]. The main
purpose of the spiral model is to avoid document driven (waterfall) and code driven (pre-
waterfall) development models which Boehm claims inevitably cause premature design
decisions that later prove costly to undue.

While there is a great deal of evidence to support the inferiority of the code and fix
development model, there is little comparative empirical data to suggest the superiority of
any of the later models to each other. On any particular project, however, certain factors
such as risk or schedule pressure may affect resource allocations within that project. This
aspect is discussed below.

3.2.1.2 Process Models

It has been recognized that there are several activities that must be managed over the phases
of the lifecycle such as configuration management, quality assurance, the development
processes themselves, measurement of the development processes, and the associated
documentation to name a few. Process models attempt to describe how to conduct these
activities in a controlled and measurable manner.

Process models must define the methods, procedures, organization, measurement,
documentation, tools, and training to achieve the desired ends. A small example will

emphasize this poinL

Fred Brooks contends that conceptual integrity is the most important consideration in
system design [BROOKS]. Basili and Reiter in [BASILI79] compared the effectiveness of
three types of teams: a single person team, a "disciplined" team consisting of three persons
rigorously using a specified methodology, and an"ad hoe" team. The single person and ad
hoc teams were allowed to develop software using methods of their own choosing. Their

study found that disciplined teams produced smaller programs than the ad hoc team, but
larger than that of the single person team. The authors also found that cyclomatic
complexity of the programs examined indicated that dedicated teams using a specified
approach were as effective and sometimes more effective than the single person team in
producing less complex programs.They contributed this to conceptual integrity and
noted,"Conceptual integrity certainly has an impact on the structural quality of the software
being produced, resulting in a closer-knit design and implementation."

Thus in this instance, the use of a design methodology is shown necessary to achieve

conceptual integrity as a quality goal for the design. As stated above, process models must
define methods.

Another example is a development process that allows underdeveloped system
documentation. Takahashi and Kamayachi reported in [TAKAHASHI] that design
documents which lack sufficient detail can produce errors as well as documents that do not
reflect system modifications. So a development process model that doesn't provide for
rigorous review, updating, and correction of project documentation can result in errors in

the developed system. Again, process models must def'me procedures.

SO_eCH _2

While these few examples hardly exhaust the impact of software process models on
quality, they do show that process models that are not rigorous can affect quality.
Sufficient evidence to empirically demonstrate the superiority of some process models over
others, has not yet been gathered. However, certain characteristics have been noted that arc
necessary for any process model to achieve its aims. The SEI report(s) [HUM J87]
[HUMS87] [HUM89] focus on the evaluation of these necessary characteristics for any
software process model. These characteristics wiU be discussed later as the methods to
assess a process model.

3.2.1.3 Resources

Resources are the people, time, and money (equipment) necessary to get the job done. In
light of our previous discussion, resources may be def'med as those factors necessary to the
process model.

Producing software is a people activity. The quality of the people involved in the
production of software can greatly affect that software. In [TAKAHASHI], the level of
skill of the programmers was found to significantly influence the error rate.

The tools and training provided to the project personnel with which to conduct the
engineering activities is also a factor beheved to influence quality. The SEI reports cover
these factors extensively in their attempts to qualify the development processes.

Organization and management of project resources can also affect the quality. In order to
maintain the conceptual integrity (discussed above), Brooks cites Harlan Mills as having
proposed a personnel organization that he calls the chief programmer team [MILLS71].
The chief programming team is compared to a surgical team; one man is the main player
responsible for, in this case, designing, writing, and testing the program, while all other
team members support him and remove all nonessential work from the chief programmer.

Time is also a resource. Of course, time means money. In fact, these two resources are
highly related. Scheduling may be thought of as the timely expenditure of money (in terms
of people to perform activities and the equipment and training that the people need) to meet
the ultimate time constraint. Time, however, is not people. In his book, "The Mythical
Man-Month" Fred Brooks details the effect of equating time and people. This effect is
expressed allegorically in an industry parable as the "nine women can't have a baby in one
month" phenomenon. Attempts to mismanage resources in this manner nearly always
result in lowered productivity.

Most research in these areas attempts to correlate productivity with the management,
organization, skill and training of project personnel and the tools provided to them. It is
widely believed that these same factors play a significant role in determining product
quality.

3.2.2 Engineering

This section examines the impact that the technical activities can have on product quality. It
should be realized that the success of every activity covered in this section is primarily
dependent on the application and rigor of the process model (see section 3.2.1.2 Process
Models) used for the activity. Since process models were discussed under Management,
they will only be mentioned in passing in the Engineering activities sections or when some
unique aspect of the particular process model for that activity should be brought out.

O"r_CH]3

3.2.2.1 Reouirements. Soecification. and Design

The lifecyclephases of requirements analysis and design can greatly affect thequality of the
softwareand thiseffectiswelldocumented. Below area few instancesof this.

• In [RUBEY] they also found that the greatest single cause (28%) of errors was the
incomplete or erroneous specification of the program. In a breakdown of the
specification deficiencies, Rubey, Dana, and Bichd found that over half of the
deficiencies were due to incomplete or incorrect design considerations and "indicate either
deficiencies in or the absence of the verification of the program specification or program
design, "

• In [PRESS] a number of industry studies (TRW, Nippon Electric, Mitre Corp., and
others) indicate that between 50 and 65 percent of all errors or defects were introduced
during the design phase of development.

• In [BASILI84] 48 percent of errors were attributed to incorrect Or misinterpreted
specifications or requirements. Design errors accounted for 22 percent of the errors.

This largeinfluenceon thecorrectnessof the softwareemphasize theimportance of these

activities on software quality.

Factors contributing to the reduction of errors introduced in these phases have been the use
of methods, supportingtools,trainingin the methods, and inotherwords, a processmodel

supporting requirements gathering, requirements and design modeling and traceability.
Testimonials to the effectiveness of commercial tools and method(and so process models
that use these tools and methods) are many (although may be inflated and certainly could
not be considered objective), but the comparative effectiveness of a particular tool or
methods in reducing errors in these phases has not been proven [YADAV]. However, the
inclusion of certain activities as part of the process model for these phases has proven to
have dramatic effects on requirements and design quality. These certain activities are
covered in section 3.2.2.3 V&V.

_,2.2.2 Coding

The activity of coding is the point where all software errors are actually codified. Russell
cites data published by Caspers Jones in 1986 suggesting that the defect density of
software ranged from 49.5 to 94.6 defects per thousand lines of code [RUSSELL]. Many
other studies substantiate these numbers (within a statistically believable variance).

However, as we have seen in the previous sections (and also the ones to come) errors are
actually introduced in many ways. Among the other things influencing software quality are
the tools that are used to code.

3.2.2.2.1 Language and other tools

Since AdaNet is intended (at the time of this writing) to contain Ada software and its
associated lifecycle products, the advantages that are attributed to Ada can extend to the
AdaNet components. These advantages are many. The strong typing of Ada has been
shown to prevent many classes of errors while the package structure has been proven to
promote modifiability and reusability. A complete list of benefits provided by Ada are too
many to list here and is not relevent anyway since, as stated above, no other languages
need be considered.

SOl_-'l'e CH 14

Other tools used in the coding process, such as debuggers, have been shown to affect
productivity [DUNSMORE], but no study found by this author has quantitatively assessed
their effect on quality. The importance of modem programming tools on software quality,
however, has been underscored by the inclusion in the SEI report [HUMPS87] of
assessment concerning the use of tools on software projects.

3.2.2.2.2 Reuse of Software Parts

Another type of tool for software production (and the one AdaNet is intended to serve) is
the reuse of software. Can the use of this type of tool affect the quality of the final
product? Takahashi and Kamayachi reported in [TAKAHASHI] that the percentage of
reused (modified) modules in a program had no effect on the error rate. In [BASILI84], in
a system where 72 percent of the code segments qualified as reused modules, 49 percent of
all system modules containing errors were reused modules. This indicates that reuse of
software can actually reduce errors.

In [RUBEY] the authors state, "Program development is a very error-prone activity, but
approximately 98 percent of all errors are uncovered through normal program development
efforts and only 2 (sic) percent of the errors remain to be found during the validation
phase." They also state,"there is no single reason for unreliable software, and no single
validation tool or technique is likely to detect all types of errors." However, their
observations caused them to note that, "the verification of the program specification and
design in advance of coding and debugging is a very beneficial activity and, indeed,is
probably essential ff reliable software is desired."

The above statement underscores the empirical results of the effects that these activities can
have on software quality. There are three types of V&V activities that we will examine:
review (inspections), proving correctness, and dynamic testing.

3.2.2.3.1 Formal and Informal Reviews

Formal reviews as specified in present day lifecycle model [MIL2167] [MIL2167A]
[MIL2168] [IEEE1028] have been recognized as highly effective in promoting software
correctness, understandability, and modifiability. However, rigorous informal reviews
have produced some almost unbelievable results. A few of these are listed below.

[GILB] reported that Project Orbit, a 500,000 line networked operating system
developed by IBM, was delivered early and had about one hundred times fewer
errors than would normally be expected using the inspection process.

In [PRESS] a number of industry studies (as mentioned above) indicated that
between 50 and 65 percent of all errors or defects were introduced during the
design phase of development. However, Pressman also cites [JON86] as having
shown that formal review techniques have been up to 75 percent effective in
uncovering design flaws.

Russell provides empirical evidence obtained on more than 300,000 lines of code

(and its design) that indicate that inspections are two to four times more effective
than formal designer testing or system testing [RUSSELL]. Russell indicates he
has seen data that, depending on the test environment's complexity, code inspection
can be up to 20 times more effective than testing.

SOFI'eCH 15

The above resultshave been repeated in many instances.In JACKER] they concluded,

"whileinspectionsdo not eliminatetesting,they can significantlyreduce the testingeffort
because inspectionsare from two to 10 (sic)times more efficientatdefectremoval than

testing."

Russellattributedthesuccessof inspectionstothe typesof errorsthatinspectionsare aptto

uncover. Russellclassifiedthedefectsreportedfor2.5millionof inspectedcode according

tothe categoriesof whether they were on account of wrong, extra,and missing statements.

He found thatextraand missing statementsaccounted for over 50 percent of the errors

found by the inspectionprocess and noted,"Extrastatementsare more likelyto be found

only in inspections;it'salmost impossible tofindsuperfluouscode through testing.Even

missing statements are difficultto detectin testing,sinceomissions are oftenrelatedto

infrequentfailurepathsthataredifficulttocream intheproductunder test."

The inspectionprocess described isa rigorouslydefined process firstdefined by Fagan

[FAGAN]. Since thattime many differentsources have shown thatmodificationsof the

process can be made so long as the rigor and preparatory steps to the inspection are
maintained [BISANT] (and many others).

3.2.2.3.2 Formal Verification

Formal program proving is advocated by many of the industry giants such as Dijkstra.
When used, these methods have produced results as effective as those of the inspection
method described above. Cobb and Mills in [COBB] state data that indicates that

"functionalverificationleavesonly two tofivefixesper thousand linesof code to be made

in laterphases,compared to 10 to30 fixesleftinunittestingby debugging."

This resultisperhaps truebecause despiteits"mathematical" nature,formal proving is
anotherform albeitintenseof inspection.Despitethepromise of itsdefinitiveness,formal

program proving will not ensure the errorlessprogram. In [RUBEY] the number of

specificationerrorsled them to conclude that,"the abilityto demonstrate a program's

correspondence to itsspecificationdoes not justifycomplete confidence in the program's
correctnesssince a significantnumber of errorsare duc to an incomplete or erroneous

specification."

Despite this disclaimer, formal verification must be considered a premier technique for

promoting software correcmess.

3.2.2.3.3 Testing

Software testing is the oldest method of attempting to provide software correctness and
reliability. Despite all the newer methods for assessing software, proper testing still
remains essential. Russell notes that dynamic testing is better (than inspections) at finding

problems relating to execution, timing, traffic, transaction rates, and system interactions
[RUSSELL].

The number of specificmethods of testinghave increasedgreatlyinthe pasttwenty years.
However, no methods or group of methods has emerged superiorfor allor a majority of

situations.Most methods generallyfallintoone of two categories:black box or white box
methods. Black box (functionaltesting)and white box (primarilypath and branch testing)

methods remain the most prevalent means for performing validation and verification testing
and both types of testing are usually considered necessary. A recurring goal is to to

_;OI=[EC;H 16

automate the testing activity, but no generally applicable method of doing this has been
achieved.

Test planning has also evolved and presents many different approaches. The most
commonly used strategies for test coverage have evolved out of the branch and path testing
techniques. Planning for this type of test strategy was an economic activity as expressed in
[IEEE982.2], "dynamic tests, the main tool for validation, have to be used cost-effectively
with measures to provide the widest test coverage of a product." McCabe's metric has
been applied as an attempt to measure the extent of this coverage (discussed later). Other
more recent methods of testing avoid this path and branch planning and rely on the
detection of failures rather than errors as the main reason and criteria for testing. A usage

testing strategy allocates the testing resources in accordance with the probability that a
failure is observed by the average user. In [COBB] Cobb and Mills demonstrated that
1.4% of the errors fixed in their study accounted for 53.7% of the failures. Fixing these
1.4% of their errors resulted in doubling the reliability of their product. Based on their
results they concluded, "Statistical usage testing is 20 times more cost-effective in finding
execution failures than coverage testing."

4.0 Methods for Ouality Assessment

[IEEE982.1] defines:

• Six categories of product measures:

1) Errors; Faults; Failures - Count of the number of defects with respect to
human cause, source code bugs, observed system malfunctions.

2) Mean-Time-to-Failure; Failure Rate - Derivative measures of defect occurrence
and time.

3) Reliability Growth and Projection - The assessment of change in failure-
freeness of the product under test and in operation.

4) Remaining Product Faults - The assessment of fault-freeness of the product in
development, test, or maintenance.

5) Completeness and Consistency - The assessment of the presence and
agreement of all necessary software system parts.

6) Complexity - The assessment of complicating factors in a system.

• Three categories of process measurements to the activities of development, test, and
maintenance:

1) Management Control - The assessment of guidance of the development and
maintenance processes.

2) Coverage - The assessment of the presence of all necessary activities to
develop or maintain the software product.

3) Risk, Benefit, Cost Evaluation - The assessment of the process tradeoffs of
cost, schedule, and performance.

SC)I_'ECH 17

Specificcountedandcomputedmeasuresaregivenin [IEEE982.1]thataddresseachof the
above categories. However, as indicated in the preceding sections, this study shall not be
limited to only quantitative measurement. [IEEE982.2] states:

"Measurement is the comparison of a property of an object to a similar
property of a standard reference. Measurements are effective when they are
used either to orient decisions, to define corrective actions, or to get a better
understanding of casual relationships between intended expectations and
observed facts."

Since the use of simply counted and nonquantitative (subjective) data can similarly shape
decisions about the assessment of quality, this type of data will also be used as a
measurement.

This study will again use the broad categories of product and process measures to classify
the various measures. Measures listed inside each of the product and process category
constitute a superset of the ones listed above.

Measurement methods to be discussed in the foLlowing sections were gathered from several
sources. To allow more immediate referral to the source of that measure, some special
conventions will be followed. For measurements defined by [IEEE982.1] the measure
number as it appears in section four of [IEEE982.1] will be given. For instance [4.40]
would refer to measure 40 of section four. Other references will be given as appropriate
and will use our standard bibliographic notation. Note that this referral does not
necessarily denote the original source of that measure, but rather a location where the
measure may be referenced.

Again, it is mentioned that this is an overview of how certain categories may be measured
and not a endorsement of any particular method. A follow-on trade study wiLl recommend
specific measures for use in AdaNet quality assessment.

4.1 Product Assessment

Product assessment is based on examination of the software. Both objective and subjective
measures are considered. Product assessment is divided into static, dynamic, and

operational assessment. Operational assessment is the capture of failure data reported by
the users. Dynamic assessment is performed by repository personnel.

4.1.1 Static Assessment

The most basic static assessment for software is to compile the code. The Ada compiler

will catch many types of errors and form the "entry" level test for submitted software.
Beyond this the code should be assessed in terms of the factors and principles discussed
above.

Correctness proofs, based on the evidence presented above, would be a premium form of
static assessment for any submitted component. However, since the virtues of correcmess
proving have been extolled above and would be the same if AdaNet were to perform the

correctness proof, they will not be repeated in this section. Instead, correctness pr?ving., if
performed by the developer, will be considered as a means of assessing the engmeenng

processes used by the submitter organization to enhance the component quality.

SOF[eC::H 18

Inspections of the code (and documentation) by the AdaNet organization is discussed
below as a means of static assessment.

4.1.1.1 Complexity & Volume

Basili suggests the metrics of volume, regularity, complexity, and reuse frequency for
identifying candidate reuse components. He recommends using Halstead's Science
Measures to measure volume and regularity [4.14] and McCabe's complexity measure
[4.16] to judge code complexity [BASILI80-2][CALDERIA].

Based on the evidence presented earlier, Halstead's Science and McCabe's complexity
measures would seem to be the definitive metrics for objectively predicting the quality
factors of correctness, modifiability, and verifiability.

4,1,1,2 Ab_la_¢tion & Information Hiding

User defined types, private and limited private types (with packages), tasking and its
rendezvous, and exceptions are the main features offered by Ada to promote abstraction
and information hiding. See [BOOCH] for a more complete discussion on these features.

A simple count of the declaration of private and limited private types together with packages
to define objects, provides one measure of the use of abstraction and information hiding.
These counts could also be compared to the number of non-private types declared.

The number of declarations of user defined types, user defined exceptions, the use of
named constants, and the overloading of operators is another measure of abstraction,
although probably not as strong as counting objects.

A ratio of the exported types, objects, and operations in a specification to the types and
objects appearing only in the body would be a measure of information hiding.

Although the above counted measures couM offer some quantitative feel for abstraction and
information hiding in a component, the only way to judge if these principles were
effectively implemented is by inspection.

4.1.1.3 Modularity.Localization. & Confirmability

McCabe advised partitioning routines whose metric exceeded ten [McCABE]. This
suggestion has quantitative merit based on the findings presented above that demonstrate an
increased error rate in routines with a complexity measure larger than ten.

Another measure of modularity is Design Structure [4.19] which can be used to assess a
detailed design. To assess localization, those modules containing system dependencies
could be checked to insure that they are isolated from other parts of the program.

Basili has proposed using data binding as a statistic to measure program quality
[BASILI75]. Data binding occurs when a procedure or function modifies or accesses a
global variable. Data flow complexity [4.25] is an example of one measure that assesses
data binding. One of the main goals of the data binding measures is to reflect the use of
global variables. Global variables can be tremendous propagators of runtime errors. Some

measures simply count the number of global variables. Object oriented designs may
influence future measures of data binding since only an objects methods (to borrow a term
from from object oriented programming) may reference and modify an object. So in a

SOFrBcH 19

sensethereis noglobalreferencing,only the 'withing' dependence on an Ada package and
its exported methods. Gannon, Katz, and Basili in [GANNON] discussed various metrics
that might be used to assess Ada packages and how they could be used to characterize the
structure of an Ada program.

As noted repeatedly by Harlan Mills and others, the intent behind Dijkstra's original
concept of structured programming was to enhance the testability of the code. Examining
the structure of the code remains a good way to assess confirmability. This would include

checking things like:

Modules having only one exit.
Loops having only one exit.
No go to's.
Appropriate use of the types of loops and branching

Again, although the above tools can render numerical data about a component, the only
way to determine if these principles were effectively used is by inspection.

4, l, 1,4 Unifgrmity & Completeness

In some part, the application of these principles is aimed at the understandability or
readability of the software. In [CALDIERA] it states, "The costs to reuse the component
can be influenced by the readability of a code fragment, a characteristic that can again be
partially evaluated using volume and complexity measures as well as measures of the
nonredundancy and structuredness of the component's implementation." Thus we see yet
another use of McCabe's complexity and the Halstead Science measures.

At this point let us note that these principles could also be applied to documentation. Some
automated grammar checkers arcoffering measures of readability and interest. Other types
of methods, such as the ones used for measuring the reading difficulty level in children's
school books, could also be used on documentation.

Coding. style deals with indentation and blocking; inline commenting for self
descriptiveness, naming conventions for objects, loops, blocks, types, subprograms,
tasks, etc.,which are ways of improving readability. However, some of the conventions of

a coding style are necessary for proving correctness. Such things as default initializations
and mode parameters, boolean expression, use of structured types, must be def'med as
preconditions in order to allow a proof.

Since automated checkers would probably only be appropriate with a particular coding
style, three methods of assessment present themselves. One, obtaining the code checker
from the component supplier and use it. Two, using a tool that would confn'm that some
attempt at code styling had been done, regardless of the particular conventions. Three,
manually verifying a coding convention(s) had been used and confirming that those
conventions met some minimum standard.

4.1.2 Dynamic Assessment

Dynamic assessment of software can be made only if the tests and expected test results for
that software are available (unless tests are to be generated). In such a case the tests could

be run and the results assessed against the results provided by the submitting organization.

SOI_'e{ZH 20

Execution analyzers can be run with the test procedures to capture the actual execution
paths traversed by the tests. The results may be used to verify test coverage measures.

If the component to be added to the repository can be captured as part of a larger program,
then measures such as the ones described by Denson and Hooi in [DENSON] can be used.

These methods assess the component versus environmental configurations that it operates
in as a result of being embedded in a larger program that creates the environment. Here the
term environment is used to describe the objects and their values existing at component
execution. A comparison is made between the environments that the component is proven
to operate in successfully to a first order approximation of the total possible environments.
This measure may be used with functional testing as well.

Verifying performance measures is possible only if the necessary environment to create the
specified load, drive the tests, and measure the result are available.

4.1.30nerational Assessment

All operational assessment is based on the failures of the software as experienced by the
(re)users. Operational assessment is the chief way to determine reliability. Some
strategies, such as seeding, to test the effectiveness of the engineering processes to locate
errors and the associated measures like Estimated number of faults remaining [4.22],
Testing sufficiency [4.29], and Test accuracy [4.36] try to predict reliability. Musa claims
that failure intensity can be determined during testing [MUSA90]. Failure intensity is
usually measured in failures per execution time. In the testing process, measurement of test
failure is usually expressed with metrics such as Run reliability [4.18]. Usually, it is only
as software fails in the field that accurate reliability estimates may be made.

The definitive and foremost source for software reliability is Musa [MUSA75] [MUSA80].
[IEEE982.1] lists many measures that may be used to represent the reliability of the
software. These include:

Fault density [4.1]
Cumulative failure profile [4.3]
Mean time to discover the next K faults [4.20]
Software purity level [4.21]
Residual fault count [27]
Failure analysis using elapsed time [4.28]
Mean-time-to-failure [4.30]
Failure rate [4.31]

Combined HW/SW system operational availability [4.39]

4.2 Process Assessment

[IE E982.1] lists several computed metrics for assessing the management and engineering
processes. These metrics will be listed as appropriate.

Also included will be a description of the methods used by the SEI for assessing and
classifying the quality of the process models used by contractors to develop software. The
SEI report [HUMS87] defines five levels of process maturity to characterize contractors:

SOFreCH 2]

I) Initial - "The initial environment has ill-defined procedures and controls. The
organization does not consistently apply software engineering management to the process,
nor does it use modern tools and technology. Level I organizations may have serious cost
and schedule problems."

2) Repeatable - "At Level 2, the organization has generally learned to manage costs and
schedules and the process is now repeatable. The organization uses standard methods and
practices for managing software development activities such as cost estimating, scheduling,
requirements changes, code changes, and status reviews."

3) Defined - "In Level 3, the process is well characterized and reasonably well understood.
The organization defines its process in terms of software engineering standards and
methods, and it has made a series of organizational and methodological improvements.

These specifically include design and code reviews, training programs for programmers
and review leaders, and increased organizational focus on software engineering. A major
improvement in this phase is the establishment and staffing of a software engineering
process group that focuses on the software engineering process and the adequacy with
which it is implemented."

4) Managed - "In Level 4, the process is not only understood but it is quantified, measured,
and reasonably well controlled. The organization typically bases its operating decisions on
quantitative process data and conducts extensive analyses of the data gathered during
software engineering reviews and tests. Tools are used increasingly to control and manage
the design process as well as to support data gathering and analysis. The organization is
learning to project expected errors with reasonable accuracy."

5) Optimized - "At Level 5, organizations have not only achieved a high degree of control
over their process, they have a major focus on improving and optimizing its operation. This
includes more sophisticated analyses on the error and cost data gathered during the process
as well as the introduction of comprehensive error cause analysis and prevention studies.
The data on the process are used iteratively to improve the process and achieve optimum
performance."

The SEI report also classifies software development tools into two categories: Inefficient
and Basic.

The SEI report lists well over a hundred questions with Yes/No answers to provide for the
assessment and classification of the software development process used by an organization

into the above categories. This study will not reiterate all of the SEI report, but will instead
indicate a category of questions addressing some concern, where appropriate, and reference
the SEI report, [HUMS87].

4,2,1 Management Process Assessment

Management activities include defining the processes that engineer's must execute to
develop the products, ensuring that those processes are supported (resources), and that all

(sub)processes integrate into a larger process (development model).

To evaluate the management process, management documentation (some project specific
and some related to the developer organization) must be assessed. This would include

software development plans, configuration management plans, quality assurance plans,

SOIg"eCH ::

acquisition plans, standards and procedure document, etc. Each document must be
evaluated by the processes it defines. Each process def'mition must describe:

production activities
verification activities
control activities

process measurement and evaluation activities

The sum of these activities should span all phases of development. The description for
each activity must include:

inputs and outputs
supporting methods and procedures
supporting standards and tools
appropriate experience and training

The software development plan should be examined to verify the smooth integration of all

processes and the organizational structuring detailing the allocation of responsibility to the
project personnel.

The SEI report, [HUMS87] provided more specific questions addressing the above-listed
topics.

Review of end-of-project documentation may reveal characteristics about management
during the project. An example is schedule slips and management's reaction to such slips
[BROOKS]. Does management panic and try to reallocate resources or will they remain
dedicated to the software process and accept some delays?

There are some tools and measure which may be used to verify management decision.
COCOMO [BOEHM81] can be used to verify cost estimates while the Required Software
Reliability [4.33] measure can be use to assess the allocation of project resources and
activities to high risk areas.

4.2.2 En_ineerin_ Processes Assessment

Assessment of the engineering processes would, in part, consist of determining that the
activities defined by the management processes were successfully carried out. This would
include examination of project documentation. For instance, requirements documents
should be assessed for completeness and traceability since these can indicate how carefully
the requirements were prepared and verified. Use of several measures described by
[IEEE982.1] would be indicated here. Such measures include:

Requirements completeness [4.35]
Requirements compliance [4.23]
Number of conflicting requirements [4.12]
Requirements traceability [4.7]
Cause and effect graphing [4.6]

Evaluation of software documentation should assess their adequacy for use in a software
maintenance environment [4.32]. Documentation should also be assessed to verify the
component's behavior is described by the documentation [RAPIDSTD]

SOF_eCH 23

This assessment should also include project records, if accessible, such as software
development folders and review minutes. A justification is provided by Mills in
[MILLS76] where he states that, "A well-designed system of deep simplicities has a
development history which is sharply distinguished from a brute-forced bowl of spaghetti.
The most noticeable difference is the debugging history. A well-designed system can be

put together with few errors during its implementation. A bowl of sp.aghetti will have a
history of much error discovery and fixup." Examination of the rewew minutes on the
design and the resulting modifications could reveal just such facts.

However, much of the evidence presented in section 3.2.2 indicates that some engineering
activities, namely V&V activities, should be assessed in greater detail because of the
profound effects they have on product quality. In particular, any assessment must ask:

Were verification activities carried out on the requirements and design activities?

Did the verification activities include correctness proofs and/or inspections?

Were the inspection steps rigorously defined and performed?

Besides these yes/no questions (that reflect, in part, the SEI evaluative criteria), there are
measures that may be indicative of the effectiveness of the verification process. Mills
suggests in [MILS76] that error-days be used as a measure of software quality. He says
that the error-day measure "indicates probable future error incidents, but also indirectly
indicates the effectiveness of the design and testing process. This measure corresponds to
Fault-days number [4.4]. Used as a process measurement, fault-days number could judge
the effectiveness of the verification processes for error detection.

Assessment of testing should examine test planning and address both validation and
verification testing. All test results by the submitter organization should be evaluated to
establish if the testing process was rigorous and sufficient resources were devoted to the
activity.

Assessment of test coverage for validation testing could use indicators such as the
[IEEE982.1] measures, Functional test coverage [4.5], and Test coverage [4.24]. An

entity-based approach to assessing validation test coverage is discussed in [DENSON] (and
above in section 4.1.2 Dynamic Assessment).

Verification test coverage may be assessed using McCabe's complexity metric. McCabe

states in [McCABE] that if the complexity v [4.15, 4.16] of a program is greater than the

number of paths tested, then one of the following must be true:

1) There is more testing to be done (more paths to be tested).

2) The program flow graph can be reduced in complexity by the difference.

3) Portions of the program can be reduced to inline code.

See [BEIZER83] for a definitive explanation of these techniques.

SOI_T_CH 24

5.0 Sources

5.1 Published

[MIL2168]

[IEEE730]

[IEEE982.1]

[IEEE982.2]

[IEEE983]

[SMAP]

Standards on Quality Issues

MIL-STD-2168

Software Quality Evaluation

ANSUIEEE Std. 730-1984

Software Quality Assurance Plans*

IEEE Std 982.1-1988

Standard Dictionary of Measures to Produce Reliable Software*

IEEE Std 982.2-1988

Guide for the Use of IEEE Standard Dictionary of Measures to
Produce Reliable Software (IEEE Std 982.1-1988)*

ANSI/IEEE Std. 983-1986

Software Quality Assurance Planning*

Information System Life-Cycle and Documentation Standards,
NASA Office of Safety, Reliability, Maintainability, and Quality
Assurance, Software Management and Assurance Program
(SMAP)

5.2 Related

[IEEE1008]

[IEEE1012]

[IEEE1028]

[IEEE1063]

IEEE829]

[MIL2167]

Standards

ANSI/IEEE Std. 1008-1987

Software Unit Testing*

ANSI/IEEE Std. 1012-1986
Software Verification and Validation Plans*

ANSI/IEEE Std 1028-1988
Standard for Software Reviews and Audits*

ANSI/IEEE Std. 1063-1987
Standard for Software User Documentation*

ANSI/IEEE Std. 829-1983
Software Test Documentation*

MIL-STD-2167

* contained in Software Engineering Standards, Third Edition, IEEE, Oct. 1989

SOF[eCH 25

[MIL2167Al

[MIL1521B]

[MlL499A]

[SEM]

Mfl.,-STD-2167A

Defense System Software Development

MIL-STD-1521B

Technical Reviews and Audits for Systems, Equipments, and
Computer Programs

MIL-STD-499A (USAF) Engineering Management

System Engineering Management Guide
Defense Systems Management College, Fort Belvoir, Virginia

5.3 Other

[ACKER]

[ADAMAT]

[AKIYAMA]

[BASILI75]

[BASILI79]

[BASILI80-2]

[BASILIS0-1]

[[BASILI84]

[BEIZER83]

[BEIZER84]

References

A. Ackerman, L. Buchwald, and F. Lewski, "Software

Inspections: An Effective Verification Process", IEEE Software,
May 1989

Ada Measurement and Analysis Tool (AdaM.AT) Overview,

Dynarnies Research Corporation, no date

F. Akiyama, "An Example of Software System Debugging,"
Proceedings of the IFIP Congress, 353-58(1971)

V. Basili and A. Turner, "Iterative Enhancement: A Practical
Technique for Software Development," IEEE Transactions on
Software Engineering, Dec. 1975

V. Basili and R. Reiter, Jr, "Evaluating Automatable Measures of
Software Development," Proceedings of Workshop on
Quantitative Software Models, Oct. 1979

V. Basili, "Product Metrics," IEEE Tutorial on Models and

Metrics for Software Management and Engineering, 1980

V. Basili, "Changes and Errors as Measures of Software
Development," IEEE Tutorial on Models and Metrics for Software
Management and Engineering, 1980

V. Basili, "Software Errors and complexity: an Empirical

Investigation," communications of the ACM, Jan. 1984

B. Beizer, Software Testing Techniques, Van Nostrand Reinhold
Co., 1983

B. Beizer, Software System Testing and Quality Assurance, Van
Nostrand Reinhold Co., 1984

so ecN

[BISANTJ

[BOEHM76]

[BO HM81]

[BOEHM88]

[BOOCH]

[BROOKS]

[CALDIERA]

[COBB]

[CURTIS]

[DENSON]

[DEUTSCH]

[FAGAN]

[FUNAMI]

[GAITIER]

[GANNON]

D. Bisant and J. Lyle, "A Two-Person Inspection Method to
Improve Programming Productivity," IEEE Transactions on
Software Engineering, Oct. 1989

B. Boehm, J. Brown, and M. Lipow, "Qualitative Evaluation of
Software Quality," Proceedings of Second International
Conference on Software Engineering, IEEE, 1976

B. Boehm, Software Engineering Economics, Prentice-Hall, 1981

B. Boehm, "A Spiral model of Software Development and
Enhancement," IEEE Computer, May 1988

G. Booch, Software Engineering with Ada, Benjamin/Cummings
Publishing Co,, 1983

F. Brooks, Jr., The Mythical Man-Month, Addison-Wesley
Publishing Co., 1975

G. Caldiera and V. Basili, "Identifying and Qualifying Reusable
Software Components" IEEE Computer, Feb. 1991

R. Cobb and H. Mills, "Engineering Software under Statistical
Quality Control," IEEE Software, Nov. 1990

B. Curtis, S. Sheppard, and P. Milliman, "Third Time Charm:

Stronger Prediction of Programmer Performance by Software
Complexity Metrics," Proceedings, 4th International Conference
on Software Engineering, IEEE, 1976

M. Denson and R. Hooi, "Validation Test Suite Coverage
Analysis," Internal Sofrech working paper, 1990

Deutsch, M. and Willis, R., Software Quality Engineering: A
Total Technical and Management Approach, Prentice-Hall, 1988

M. Fagan, "Design and code inspections to reduce error in
program development," IBM System Journal, vol. 15, no. 3,
1976

Y. Funami and M. Halstead, "A Software Physics Analysis of
Akiyama's Debugging Data," Proceedings of the Symposium on
Computer Software Engineering, 1976

R. Gautier and P. Wallis, editors, Software reuse with Ada, IEEE

Computing Series 16, Peter Peregrinus Ltd. publishers, 1990

J. Gannon, E. Katz, and V. Basili, "Metrics for Ada Packages: An
Initial Study," Communications of the ACM, 1986

S C)I=[_CI'I 27

[GIBSON]

[GILB]

[HUM J87]

[HUMS87]

[HUM89]

[McCABE]

[McCALL]

[MILLS71]

[MILLS76]

[MEYER]

[MUSA751

[MUSA80]

[PARNAS]

[PRESS]

[PRIETO-DIAZ]

Gibson, V. and Senn, J., "System Structure and Software
Maintenance Performance," Communications of the ACM, March
1989

T. Gilb, Principles of Software Engineering Management,
Addison-Wesley Publishing Company, 1988

W. Humphrey, "Characterizing the Software Process: A Maturity
Framework," Technical Report CMU/SEI-87-TR-11, June 1987

W. Humphrey, "A Method for Assessing the Software
Engineering Capability of Contractors," Technical Report
CMU/SEI-87-TR-23, Sept. 1987

W. Humphrey, "The State of Software Engineering Practice: A
Preliminary Report," Technical Report CMU/SEI-89-TR-1, Feb.
1989

T. McCabe, "A Complexity Measure," IEEE Transactions on
Software Engineering, Dec. 1976

J. McCall, P. Richards, and G. Waiters, "Factors in Software

Quality," 3 Vols., NTIS AS-A049-014, 015, 055, November
1977

H. Mills, "Chief Programmer Teams, Principles, and
Procedures," IBM Federal Systems Division Report FSC 71-
5108, 1971

H. Mills, "Software Development," IEEE Transactions on
Software Engineering, Dec. 1976

B. Meyer, "Reusability: The Case for Object-Oriented Design,"
Software Reusability. Vol. II, ACM Press, 1989

J. Musa, "A Theory of Software Reliability and its Application,"
IEEE Transactions on Software Engineering, Sept. 1975

J. Musa, "Software Reliability Measurement," The Journal of

Systems and Software, Elsevier North Holland, Inc. 1980

D. Parnas, "On the Criteria to be Used in Decomposing Systems
into Modules," Communications of the ACM, Dec. 1972

R. Pressman, Software Engineering: A Practioner's Approach,
McGraw-Hill Book Company, 1987

R. Prieto-Diaz and P. Freeman, "Classifying Software for

Reusability," IEEE Software, Jan. 1987

so ecA :8

[RAPtDSTD]

[RUBEY]

[RUSSELL]

[TAKAHASHI]

 ¢ITHROVq

[YADAV]

RAPID Center Standards for Reusable Software, October 1990.

R. Rubey, J. Dana, and P. Bich6, "Qualitative Aspects of software
Validation," IEEE Transactions on Software Engineering, June
1975

G. Russell, "Experience with Inspection in Ultralarge-Scale
Development," IEEE Software, Jan. 1991

M. Takahashi and Y. Kamayachi, "An Empirical Study of a Model
for Program Error Prediction," IEEE Transactions on Software
Engineering, Jan. 1989

C. Withrow, "Error Density and Size in Ada Software," IEEE
Software 1990

S. Yadav, R. Bravoco, A. Chatfield, and T. Rajkumar,
"Comparison of Analysis Techniques for Information Requirement
Determination," Communications of the ACM, Sept. 1988

SC) I_ECH 29

